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A CONSTRUCTION OF THE MEASURABLE POISSON
BOUNDARY: FROM DISCRETE TO CONTINUOUS GROUPS

SARA BROFFERIO

ABsTracT. Let I' be a dense countable subgroup of a locally compact con-
tinuous group G, and p a probability measure on I'. Two spaces of harmonic
functions are naturally associated with p : the space of p-harmonic functions
on the countable group I" and the space of u-harmonic functions seen as func-
tions on G defined a.s. with respect to its Haar measure A. Correspondingly
we have two natural Poisson boundaries : the I'-Poisson boundary and the
G-Poisson boundary. Since boundaries on the countable group are quite well
understood, a natural question is to ask how the G-boundary is related to the
I’-boundary.

In this paper we introduce a general technique that allows to build the G-
Poisson boundary from the I'-boundary. As an application, we determine the
Poisson boundary of the closure of the Baumslag-Solitar group in the group of
real matrices. In particular we show that, under suitable moment conditions
and assuming that the action on R is not contracting, this boundary is the
p-solenoid.

An important topics in the study of random walks on groups is the study of
harmonic functions relative to a measure x4 on a group G, i.e. of the functions f on
the group such that

1) flg) = /G F(gm)duy).

The Poisson Boundary is, in this setting, the measurable space that gives the in-
tegral representation of all bounded harmonic functions. This spaces encodes the
asymptotic information contained in all random walk paths of law p. A natural
problem is to determine when this space is trivial and, if it is not, to exhibit a
geometric model.

After the works of Blakwell, Choquet and Deny on abelian groups and the sem-
inal papers of Furstenberg in the sixties, much progress has been made on these
questions. In particular when the harmonic functions live on a countable discrete
group T', a complete theory has been developed by Derriennic [5], Kaimanovich
and Vershik [15], allowing to construct the Poisson Boundary (or at least decide
whether it is trivial) for large classes of groups.

In the more general case where the measure p is supported on a locally compact
group G, the situation is more complex and one has to decide on which space
harmonic functions live. A natural choice is to consider harmonic functions as a
subspace of the space L (G, A) of essentially bounded functions with respect to the
Haar measure X of the group. If the measure p is spread-out (and thus well adapted
to the continuous structure) satisfactory general results have been obtained for Lie
groups. The case where the measure p is not necessarily smooth, is far from being
completely understood. Some results have been obtained for particular classes of
groups (e.g. Nilpotent groups [10, 2], NA groups [17]...). Abstract constructions
have been also proposed, but they do not allow, in general, to construct geometric
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models for the boundary, nor to check whether it is trivial. I refer to the survey
of M.Babillot [1] for a precise and complete overview of the subject and a more
detailed bibliography.

In antithesis to the case of a smooth measure, we may consider a purely atomic
measure i, supported on a countable subgroup I' that we can suppose dense in the
continuous group G. In such situation, harmonic functions can be seen both as
functions on the discrete group I' and as measurable functions on the continuous
group G.

When the Poisson boundary of the discrete group I' is known (so that we can
describe I'-harmonic functions), several natural questions concerning G-measurable
harmonic functions arise:

e Which I'~harmonic functions can be extended to a G-harmonic function?

e How are the I'-Poisson Boundary and the G-Poisson Boundary related?

e If we know how G acts on the I'-Poisson Boundary, can we give conditions
that imply that there are no non-trivial G-harmonic function?

The goal of this manuscript is to investigate these questions. We are in particu-
larly interested in groups of matrices with rational entries, embedded as subgroups
of groups of real matrices. In this case the Poisson boundaries of the countable
subgroups are well understood [4], while there are still many open questions con-
cerning the Poisson boundaries of the corresponding real groups (see section 1 for
more detailed examples).

In section 2, we give a general construction of the G-Poisson boundary as a space
of T-ergodic components in the product of G and the I'-boundary (Proposition 1).
We use this construction to determine the real boundary in the case of the Baumslag
Solitar group BS(1,p), embedded as a dense subgroup of

Hpo H|mez,beR}=R>«Z.

In particular, if p is dilating on R it is known that the BS(1, p)- Poisson boundary
is the p-adic field Q, (thus there is no "real" component in the boundary), however
the real Poisson boundary is not trivial and is given by the p-solenoid

[0,1) x Z, = (R xQp) /Z(l/p)
where the action of Z(1/p) on R x Q,, is the diagonal action (Corollary 3).

Acknowledgement. 1 would like to thank Vadim Kaimanovich, Jean-Frangois Quint
and Bertrand Deroin for enlightening discussions.

A spacial thanks to Wolfgang Woess for his continuous and kind support during
all my mathematical carrier.

1. G-HARMONIC FUNCTIONS AND G-POISSON BOUNDARY

This section is a brief introduction to measurable Poisson boundary, following
Babillot [1] and Kaimanovich [13]

G-harmonic functions. Let G be locally compact second countable (thus metriz-
able and complete) group. Let & be the Borel o-algebra of G and A the right Haar
measure.

Let p be a probability on G such that the closed semigroup generated by the
support of p is the whole group G.
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We say that a function f € L (G, A) is p-harmonic on (G, ) (or G-harmonic)
if
flg) = / flgv)du(v) for M\-almost all g € G.
G

We denote by H{°(G) the subspace of G-harmonic functions in L>(G, A).

It can be shown, using left convolution by identity approximations of G, that any
f € H(G) is A-a.e. limit of harmonic functions that are left uniformly continuous
on G. In this sense, the space of G-harmonic functions is determined by the behavior
of continuous ones. In particular, if all continuous harmonic functions are constant
then H{°(G) is trivial. We denote by H 2 (I'") the space of left uniformly continuous
G-harmonic functions.

Random walks and invariant map. Harmonic functions can be seen as asymp-
totic values of random walks in the following way. Let (Q,P) = (G, u)Y be the
space of random steps and consider the right random walk

Tn(w) = wy -+ - wy.

Let f be a bounded G-harmonic function. Notice that since the function f is defined
only A-almost surely, the process f(gr,(w)) is well defined only for A-almost all g.
For this reason the starting point g has to be chosen according to p, a probability law
on G with bounded density with respect to A. Then the random process f(gr,(w))
is well defined on the space (G x §2, p x P), and since f is harmonic, it is a bounded
martingale. Thus the limit

(2) lim f(gr,(w)) =: Z;(g,w) exists p(dg)P(dw)-almost surely.
n—oo
Let T be the shift on ; then is easily checked that
Zs(g,w) = Z(gw1, Tw) p(dg)P(dw)-almost surely

that is, Z¢ is a bounded measurable invariant map on G x . In fact (2) defines
an isometry of H{°(G) onto the subspace of measurable invariant maps of L™ (G x
w, p X P). The reverse map is given by

fz(9) ==E(Z(g,w)) p(dg)-almost surely.

Poisson transform and G-Poisson boundary. Take a measurable space (X, X, v)
endowed with a measurable G-action and a u-stationary probability measure v. The
Poisson transform

Pyides folg) = / o - 2)dv(x)

maps any bounded function ¢ in L*°(X,p * v) to a p-harmonic function f, of
Notice that the Poisson transform is not well defined as a map on L*(X,v). In
fact, since v is not in general G-quasi invariant (i.e. g*v is not in general absolutely
continuous with respect to v), two functions that coincide v-a.s. can have different
images.

If the Poisson transform is an isometry of L>°(X, p * v) onto H{°(G) then we
say that (X,v) is the (G, u)-Poisson boundary. It can be shown that the Poisson
boundary is unique as a G-measurable space and that (X, p*v) is a Lebesgue space
(cf. [1] propositions 2.26 and 2.28).
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If X is the G-Poisson boundary then there exists a measurable boundary map
bnd : Q@ — X such that for every harmonic function f € H{°(G) there exists
¢y € L>®(X, p*v) with

67(g-bnd(w)) = lim f(gra(w))  p(dg)P(dw) — as..

n—oo

(cf. [1] proposition 2.26. See also the proof of Lemma 2 ).Thus

flg) = /qbf g-x)dv(z) p(dg) — a.s. and
Zf(g,w) = ¢5(g-bnd(w))  p(dg)P(dw) — as..

The p-invariant measure v on X is then the image of P under bnd. The boundary
map is G-equivariant in the sense that bnd(w) = w; - bnd(Tw).

Countable group I'. Suppose now that the group G =T is countable. The Haar
measure A is then the counting measure and one can choose p with non-zero mass
in all elements g € I'. This means that all the equalities above hold for all g € T'.

In this particular case (and under the hypothesis that the support of p generates
I as a semigroup) the stationary measure v on X is I'-quasi invariant and P, is
well defined on L™ (X, v) itself.

The fact that p is absolutely continuous with respect to Ar is also fundamental
for the study of Poisson boundary based on entropy [5, 15]. This complete theory
has permitted to determine a geometric model of the Poisson boundary for large
classes of countable groups.

Countable subgroup I' of a continuous G. In this note we are interested in the
case when the measure p is supported on a countable subgroup I' of a continuous
group G and in particular when I' is dense in G. Then a continuous harmonic
function f on G is uniquely determined by the values f(v) for v € T'. Thus f can
also be seen as a I'-harmonic function. In other words, the restriction to I' is an
isometric embedding of H{? (G) into HY°(T"). In particular if (X, v) is the I'-Poisson
boundary then there exists ¢ in L*°(X,v) such that

=/ ¢(y-z) Vyel.
X

However, in general there is no such integral representation for f(g) when g is not
in I, since X is not a priori a G-space.

In conclusion the I'-Poisson boundary contains in principle all the information
about the G-Poisson boundary. But in order to extract this information one needs
to answer two related questions:

e Determine the G-action on (an extension of) X adapted to the action of G
on HY(G)

e Determine which are the functions in L*°(X,v) whose Poisson transform
can be extended to G.

Examples: Linear groups with rational coefficients. We are in particular
interested in the case where the I'-Poisson boundary is known, but G-harmonic
functions are not completely understood. Here some examples.
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Affine groups. The real affine group Aff(R) is the group of real maps (b,a) : z —
ax + b with a € R} and b € R, that is the group of matrices

AH(R){[S Hmem,beR}RxRi.

Harmonic functions on Aff(R) have been widely studied and some results are
known also without continuity assumptions on the measure u. In particular, under
the log-moment assumptions :

E(|logal) < oo and E(log™ b) < oo,

it is known that:

e If E(loga) = 0 the Aff(R)-Poisson Boundary is trivial ([18], see also [1,
sect.4.5])

o If E(loga) < 0 the Aff(R)-Poisson Boundary is R with the p-invariant mea-
sure v given by the law of

(3) Do = Zal---an,lbn
n=1

where (b, a,,) are i.i.d. with law p ([17], see also [1, thm 5.7]).

If E(loga) > 0 and the measure is spread-out then the Aff(R)-Poisson Boundary is
trivial. But it is still not known on what happens if E(loga) > 0 and the measure
w1 is supported on a countable subgroup TI'.

On the other hand, using entropic criteria, the I'-Poisson boundaries are well
understood. If ' = Aff(Q), the group of affine maps with rational coefficients, and
under suitable moment conditions, the Aff(Q)-Poisson boundary is given by the
product of the p-adic fields @, where the sum (3) converges a.s., that is

I @

p:E(log |al») <0

where we use the convention that Q. = R (see [3]).
This property was first proved by V.Kaimanovich [13] in the case of the Baumslag-
Solitar group

BS(17p):<[p§1 ill D:{[p: q}in]|m,netq€Z}:Z(;)mZ.

for some prime p. In this particular case the BS(1,p)-Poisson boundary is R if
E(loga) = —E(loglal,) < 0 and Q, if E(log|al,) = —E(loga) < 0.

It is then natural to ask which harmonic functions can be extended to (continu-
ous) harmonic functions of the closure of BS(1,p) in Aff(R), that is to

m

AH(p,R):{[pO l{]|mEZ,beR}:RxZ.

It turns out that, even if the B.S(1, p)-Poisson boundary is Q,, the real Poisson
boundary is not trivial. In Corollary 3 we will construct the Aff(p, R)-Poisson
boundary as a p-solenoid.

The unpublished manuscript [16] of J.-F. Quint presents a similar example of dy-
namical system acting in non contacting way on the torus and constructs harmonic
functions on the unstable variety.
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As we will see in Corollary 2 this kind of construction is possible since the action
of BS(1,p) on Aff(p,R) x Q, has a discrete orbit. It is still not clear to me what
happens when the action of I' on the product of G and the I’-Poisson boundary is
dense.

Question. For instance, let Aff(1/2,1/3) be the countable subgroup generated by
the affinities

3t 41 2+l 41 2m23ms  gonz3ns
0 L1 o 1 = 0 1 |mi,n; et q€Z 5.

Suppose E(log |a|~) > 0, thus the I'-Poisson boundary is equal to Q2, Q3 or Q2 x Qs
(according to the sign of E(log|al2) and E(log|a|s) ) and has no real component.
Is then the Aff(R)-Poisson boundary trivial?

Semi-simple groups. Similar questions arise for semi-simple groups. Take, for in-
stance, a measure p supported on SLy(Q). Then the SLy(Q)-boundary is the
product of the Q,-projective lines for all primes p such that the support of x is not
contained in a compact subgroup of SL2(Q,) (see [4]). In particular for

I'=SLy(Z(1/2)) = {{ i Z } lad —ed = 1,a,b,c et d € Z/2™ for some m € Z}

the I'-Poisson boundary is P*(R) x P*(Q5). It is natural to expect that the SLy(R)-
Poisson boundary should be P!(R), however I am not aware of any proof of this
fact. See also [1] section 1.7.4, for a similar example.

2. FROM I'-BOUNDARIES TO (G-BOUNDARIES

Construction of a G-action on a I'-space. Let (X,X,v) be a I'-measurable
Lebesgue space equipped with a measure v that is ['-quasi invariant. Suppose that
I' is contained in a locally compact group G. We want to construct a sort of minimal
class of functions on X, on which G acts in such a way that the restriction to I' of
this action coincides with the I'-action.

Consider the product space (G x X, 8 x X,p x v) and define the I'-action on
GxX

(4) yx(g,x) = (g7 ",y ).

Let J be the o-algebra of (T, x)-invariant functions of G x X that is the class of
the functions ¢ such that p(dg) x v(dz)-almost surely

(5) o(g,2) = dlgy ', yx)  VyeTl.

The o-algebra J is complete because p x v is (T',x)-quasi invariant and I is
countable. Rokhlin’s correspondence associates with the o-algebra J a partition of
G x X, such that the functions in J are constant on the elements of the partition.
Since p is in the class of the Haar measure, we can choose the partition 7 to be
G-equivariant, for the G-action on G x X given by left multiplication on the G
component. In fact we have the following

Lemma 1. 1. There exists a countable family {¢n}nen of bounded functions
dense in L'(G x X,J,p x v) such that for any x € X the function ¢, (-, x)
is continuous on G and such that (5) hold for all (g,x) € G x X.
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2. Let n be the partition defined by the equivalence relation
(6) (91,21) ~ (92, %2) © dn (Y91, %1) = Pn(V92,22) Vn € N and v €T

Then n is a measurable partition (i.e. countably generated) and the associ-
ated complete o-algebra coincides with 3. In particular, for all ¢ € T there
exists ¢ defined on X =Gx X/n such that ¢ = pon p X v-a.s.

3. If G acts on G x X by the left multiplication on the G component, then such
a partition is G-equivariant, i.e.

go - n(g, ) = n(gog, ) Vgo,g € G and z € X

Proof. 1. Since (G x X,J,p x v) is a Lebesgue space , there exists a countable
family {p;} of bounded functions dense in the L'-norm. Set y;(g,2) = 0 on the
set of the (g, z) on which (5) does not hold, in order to obtain a family of functions
*-invariant everywhere.

Take an approximation of the identity on G, i.e. a sequence of non-negative
continuous functions «, whose supports shrink to the identity e and such that
lan|l} = 1. Let

#1(9.:2) = [ an(bygilhg.2)dAR)
e}
It easy checked that the ¢} are still x-invariant. By classical results, for any x € X,
the functions 7 (-, ) are continuous and converge to ¢;(-,z) in L'(G, p) when n
goes to co. Then
tim (o7 @il = Jim [ en) - o)l dvla)
n—roo X

n— oo

n—oo

_ / lim [} (-, 2) — @i, 2)||f dv(z) = 0
X

since [|@? (-, ) — @i(-,z)||] is bounded by 2|¢;]|2X" .
Thus {p?};, is a countable family of G-continuous functions dense in L'(G x
X,3,pxv).
2. Let {I;} be a countable family of intervals of R that separates the points
and let
B(n,i) == ¢, (I;) C G x X.
Then the partition 1 defined in (6) is generated by {vB(n,?)|y € I',n,i € N}; in

fact
n@g)= () Bmi) () B0
(g,z)evB(n,i) (g,)EvB(n,i)

Since by step 1 the complete o-algebra generated by the sets B(n, ) is J, by Rohlin’s
correspondence, we can conclude that any function of J is almost surely constant
on the elements of the partition.

3. Finally to prove G-equivariance of 7, we need to verify that for every go,g € G
and z € X, we have that (¢, z") € n(g, z) i.e.

bn(vg',2") = pn(vg,2) VneNand yel
if and only if go - (¢',2') = (90g’. 2’) € n(gog,z), i.e.
¢n (0909, 2") = dn(v909,2) Vn e Nandyy €T.

This follows from the fact that the functions ¢, are G-continuous and that I' is
dense in G, letting v — y0g0 (resp. Yo — g5 ).
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If 7 is defined as in (6), let
X =GxX/n

be the space oﬁthe 7 components. The projection 7 : G x X — X defines a natural
o-algebra on X
J={AcCGxX|n ' (4) e B xXx}.
By the previous lemma the completion of 77*1(5) is 7.
We have just proved that X has a natural structure of a G-space :

(7) 90 - 1(g, ) = 1(g0g, )

Since the functions ¢, are x-invariant everywhere, n allows to "transfer" the I'-
action from G to X, in the sense that

n(gv.x) =nlg,y-x) V(g,x) € G x X.
In particular, the action of I" on X and on its projection on X are related by
v-nle,x) =n(y,z) =nle,v- ).

Let 7 = n,(de x ) be the image on X of the measure 6. x v by 7 , that is

(®) ) = /X J(n(e ))dv ().

By (7) we have then that the image by n of p x v is px U:

ne(p x V)(@) = /G Oln(g.2)dp(g)iv(a) = /G 8o n(e,z))dp(g)dv(a)
= p*i(9)
In conclusion

Corollary 1. The projection n induces an isometry between L>°(G x X,J,p x v)
and L= (X,3,p* D).

In the next section, using this measure theoretical construction, we will build the
G-boundary on the I'-boundary and prove that, if the x-action has a fundamental
domain, this fundamental domain is the G-boundary. However, it is not clear to
me how to construct a geometric model of this measure space when the I'-action is
"dense".

An interesting case is, for instance, when G acts on X and this action coincides
with the I'-action. Then L (X, p*v) embeds isometrically in L>°(G x X, T, p X v).
In fact if ¢ € L>°(X, p * v) then

by(g, ) == Y(g- )

is clearly x-invariant and this embedding is an isometry since

64l = lim ( / b9, 2)"p(dg)v(dz))""" = tim ( / w(y)prv(dy) " = 9]

p—o0
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Question. However it is not clear under which conditions this map is surjective,
that is when X coincide with X.

For instance, as a toy model, take G = (R,+), X = R and I' = Q. For which
measure v does X = R? This is true by if v is a.c. with respect to the Lebesgue

measure, but what happen for other measures?
What happen if G = SLy(R) X = PY(R) and ' = SL(Z(1/2)) (or T = SL2(Q))?

From I'-boundaries to G-boundaries. Suppose that the measure v on X is u-
stationary. For every bounded function ¢ in L (G x X, p x v) define the Poisson
transform:

P, folg) = /gzﬁ(g,x)dy(x)for A(dg)-almost all g.

If ¢ € J then fy is a bounded p-harmonic function on L*°(G, A), as required.
Indeed

fo(9) / &g, 2)v(dz) = / 6(g, - 2y (da)u(dy) =

— /qb(g’y,x)u(dx)u(d’y) :/fda(g’y)u(dv)

The following proposition shows that all G-harmonic functions can be written
in such a way

Proposition 1. If (X,v) is the Poisson boundary of (T',u) then for every u-
harmonic function f in G, there exists a bounded function ¢ € J such that f = fy
in L (G, \).

In this case P, is an isometry from L>(G x X,J,p x v) onto H(G). In other
word (X, V) is the G-Poisson boundary.

Proof. Let w € (Q,P) = (I'N, u®Y) and 71, = rp(w) = wy - - -wy, be the right random
walk on T of law u. The process f(gri(w)) is a bounded martingale on the space
(G x Q, p x P) thus it converges almost surely. If bnd : Q@ — X is the boundary
map

(9) lim_f(gr(w)) = d(g, b (w))

pxP-almost surely. Thus ¢(g, bnd(w)) is G x Q measurable and, since v = bnd ~'P,
the function ¢(g,x) is G x X-measurable. Furthermore since I' is countable, for
p x P-almost all (g,w)

lim f(gyry(w)) = ¢(g7, bnd(w)) for all y € T.
Since X is a p-boundary, notice that
wibnd(Tw) = bnd(w)

where T is the shift on ). Take -7 in the support of p then the event «; = w; has
positive measure and conditioned to this event

oo ybnd(Tw)) = é(gy; ', bnd(w)) = lim f(g77 'y (Tw)) = ¢(g, bnd(Tw))

Since Tw is independent of w; and of same law as w and that the support of u
generates I', we can conclude that ¢ € J.
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Lastly, lets us check that the Poisson transform is an isometry. In fact

15115 = lim </|f¢(g)|”dp(g)>l/p < lim (//|¢(g,x)|pd1/(x)dp(g))1/p = ||g||2x”

On the other hand by the bounded convergence theorem

lgllexr = (//|¢(g’x)|pdy(x)dp(g))1/p:
(/ / | lim f (9’"n(W))deP(w)dp(g))l/p:

~ lm ( /] If(grn(w))lpdp(g)dﬁ”(w))Up

n—oo
1/p
< (/(Ifll’;o)pdﬂ”(w)) = If11%
since p is G-quasi invariant. O

G-Poisson boundary as I'-ergodic diagonal components. Another way to
express the result of Proposition 1 is to say that the G-Poisson boundary coincides
with the space of ergodic components of I" on (G x X) with respect to the action
* defined in (4).

Observe that the action x is, in reality, the standard left diagonal action of I" on
G x X:

7 (9.2) = (v9.7 ).

In fact the two actions are conjugated by the map 7 : (g,2) — (¢!, ), that is
an isomorphism of the measure space of (G x X, p x v) that preserves the class of
measure. Thus the space L™ (G x X, T, p X v) coincides (via m) with the space of
bounded functions of (G x X, px v) that project on I'\ (G x X). In particular the G-
Poisson boundary is trivial if and only if the (diagonal) action of T on (G x X, pxv)
is ergodic.

Conversely if the action of I' on G x X is "measurably discrete", that is there
exists a fundamental domain A, then is possible to identify the G-Poisson boundary
with this geometric model:

Corollary 2. Suppose there exists a measurable fundamental domain A € & x X
for the action *x of T on G x X (or equivalently for the diagonal action) that is

e pxv(I'xA)=1
e pxV(ANU, er_p7*A) =0
Let © be the restriction of the o-algebra & X X to A. Then L (A, D,p X v) is

isometric to L™ (G x X,J,p x v) . The measurable space (A, D) with the induced
G-action

g0 % d(g,2) ==Y dgogy™ ",y ) 1algogy ™", 7 - ) for all ¢ € L™(A,D,p x v)
yel’
and the p-invariant measure defined by

70)i= Y [ 66 a)tabt g o)

yell
is the G-Poisson boundary.
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Proof. The map
A—TxA

induces an isometry of L (A, D, p x v) onto L>*(G x X, T, p x v).
In fact if A is a non trivial set of A then I' x A is a non trivial set of 3. Clearly
I'x A € J and it has non-zero measure. Let B C A be a non-trivial set such that
pxv(ANB) =0. We claim that p x v(I'x ANT % B) = 0; in fact the measure p x v
being quasi-invariant of p X v(y* AN~y * B) =0 and if v; # 72
pxv(iy* ANy xB) <pxv(AN U y*xA)=0
v€r—{e}
The isometry is surjective. Let I € J, we claim that [ =T x (I N A). Indeed
Tx(INA)=Jy*xIny*xA=JUINnyxA)=InT+A
%l ¥

Observe that if A C A then

Irea(g,x) = lalgy v - )
~yel

and the sum has only one term for p x v-almost all (g,x) . It easily seen that the
projection of v on ® is

v(A) = Z/lA(7_1,7 -z)v(dz) = v([ % A).

el

3. G-POISSON BOUNDARY OF BAUMSLAG-SOLITAR GROUP

Corollary 3. Let p be a prime number and consider the Baumslag-Solitar group

wson-(|7 1))

Let 1 be a irreducible measure on BS(1,p) with first logarithmic moment on R and
Qp. Suppose that

bp = /Flog\a(’v)lpdu(v) <0

where v = [ a(Ov) b(iy) ] that is the BS(1,p)-Poisson boundary is X = Q,. Let

Aff(p,R)—Hpo Hmez,bek}—ﬂwz

be the closure of BS(1,p) in Aff(R). Then the Aff(p,R)-Poisson boundary is the
p-solenoid :

A ={(g.7) € AE(R) x Qpla(g) = 1;0 < b(g) < L;]a|, <1} =[0,1) x Zy,
equipped with the Aff(p,R)-action on ¢ € L®(A,p X v):

(b7pm) : (b(mooawiﬂ) = Z 1A : (b(pmxoo + b - vamxp + 5)’
BEZ(1/p)
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and the invariant measure
CEIED S R I Res)
BEZ(1/p)N[0,1)

Proof. We just need to prove that A is a fundamental domain. In fact for any
x € Qp, let a(x) € Z(1/p) such that |z — a(z)|, < 1. The choice of « is unique up
to the sum with an integer. It easily checked that, for every (b,z) € R x Q,, the
unique k € Z(1/p) such |z + k|, <l and b—k € [0,1) is k = [b + a(z)] — a(z).
Thus
v*((b,p™), ) € Ay =([b+a@™r)] - alp™z),p™)
(Il

To illustrate how the previous corollary can be used to study the behaviour of
harmonic functions on BS(1,p), consider for example
(g, ) = 1j0,1yx {1} (9) 1z, (T)
and the associated harmonic function:
£0.0") = [ X touy(b- AL, (07 + Bv(da),
BEZ(1/p)
Then we have

e f is periodic of period p on the b coordinate
f(pk +b,p™) = / Y Loy Bz, (0" x + B + ph)v(de) = f(b,p™)
BEL(1/p)
o lim,, 00 f(b,p™) =1if b€ [0,1) 4+ pZ. In fact ||f|lcc =1 and b € [0,1)

Fb.p™) > / 1oy (0) Lz, () (de) = v(p~™Z,) — 1

when m — 400
o lim,, 00 f(b,p™) =0if b [0,1) 4+ pZ in fact

fbp™) < / S Loy (b = ALz, (075 + B) L, (2)(d) +
BEZ(1/p)

+(1 = v(p' " Zp))

< D LG ALz, (B) + (1 - v(p'T"Zy)
BEZ(1/p)

= ) 1o —pk)+ (1 - v "Z,))
kEZ

= Loasz®) + (1= v(p'"Z,).
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