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A CONSTRUCTION OF THE MEASURABLE POISSON

BOUNDARY: FROM DISCRETE TO CONTINUOUS GROUPS

SARA BROFFERIO

Abstract. Let Γ be a dense countable subgroup of a locally compact con-
tinuous group G, and µ a probability measure on Γ. Two spaces of harmonic
functions are naturally associated with µ : the space of µ-harmonic functions
on the countable group Γ and the space of µ-harmonic functions seen as func-
tions on G de�ned a.s. with respect to its Haar measure λ. Correspondingly
we have two natural Poisson boundaries : the Γ-Poisson boundary and the
G-Poisson boundary. Since boundaries on the countable group are quite well
understood, a natural question is to ask how the G-boundary is related to the
Γ-boundary.

In this paper we introduce a general technique that allows to build the G-
Poisson boundary from the Γ-boundary. As an application, we determine the
Poisson boundary of the closure of the Baumslag-Solitar group in the group of
real matrices. In particular we show that, under suitable moment conditions
and assuming that the action on R is not contracting, this boundary is the
p-solenoid.

An important topics in the study of random walks on groups is the study of
harmonic functions relative to a measure µ on a group G, i.e. of the functions f on
the group such that

(1) f(g) =

∫
G

f(gγ)dµ(γ).

The Poisson Boundary is, in this setting, the measurable space that gives the in-
tegral representation of all bounded harmonic functions. This spaces encodes the
asymptotic information contained in all random walk paths of law µ. A natural
problem is to determine when this space is trivial and, if it is not, to exhibit a
geometric model.

After the works of Blakwell, Choquet and Deny on abelian groups and the sem-
inal papers of Furstenberg in the sixties, much progress has been made on these
questions. In particular when the harmonic functions live on a countable discrete
group Γ, a complete theory has been developed by Derriennic [5], Kaimanovich
and Vershik [15], allowing to construct the Poisson Boundary (or at least decide
whether it is trivial) for large classes of groups.

In the more general case where the measure µ is supported on a locally compact
group G, the situation is more complex and one has to decide on which space
harmonic functions live. A natural choice is to consider harmonic functions as a
subspace of the space L∞(G,λ) of essentially bounded functions with respect to the
Haar measure λ of the group. If the measure µ is spread-out (and thus well adapted
to the continuous structure) satisfactory general results have been obtained for Lie
groups. The case where the measure µ is not necessarily smooth, is far from being
completely understood. Some results have been obtained for particular classes of
groups (e.g. Nilpotent groups [10, 2], NA groups [17]...). Abstract constructions
have been also proposed, but they do not allow, in general, to construct geometric
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models for the boundary, nor to check whether it is trivial. I refer to the survey
of M.Babillot [1] for a precise and complete overview of the subject and a more
detailed bibliography.

In antithesis to the case of a smooth measure, we may consider a purely atomic
measure µ, supported on a countable subgroup Γ that we can suppose dense in the
continuous group G. In such situation, harmonic functions can be seen both as
functions on the discrete group Γ and as measurable functions on the continuous
group G.

When the Poisson boundary of the discrete group Γ is known (so that we can
describe Γ-harmonic functions), several natural questions concerning G-measurable
harmonic functions arise:

• Which Γ-harmonic functions can be extended to a G-harmonic function?
• How are the Γ-Poisson Boundary and the G-Poisson Boundary related?
• If we know how G acts on the Γ-Poisson Boundary, can we give conditions
that imply that there are no non-trivial G-harmonic function?

The goal of this manuscript is to investigate these questions. We are in particu-
larly interested in groups of matrices with rational entries, embedded as subgroups
of groups of real matrices. In this case the Poisson boundaries of the countable
subgroups are well understood [4], while there are still many open questions con-
cerning the Poisson boundaries of the corresponding real groups (see section 1 for
more detailed examples).

In section 2, we give a general construction of the G-Poisson boundary as a space
of Γ-ergodic components in the product of G and the Γ-boundary (Proposition 1).
We use this construction to determine the real boundary in the case of the Baumslag
Solitar group BS(1, p), embedded as a dense subgroup of{[

pm b
0 1

]
|m ∈ Z, b ∈ R

}
= Ro Z.

In particular, if µ is dilating on R it is known that the BS(1, p)- Poisson boundary
is the p-adic �eld Qp (thus there is no "real" component in the boundary), however
the real Poisson boundary is not trivial and is given by the p-solenoid

[0, 1)× Zp = (R×Qp)
/
Z(1/p)

where the action of Z(1/p) on R×Qp is the diagonal action (Corollary 3).

Acknowledgement. I would like to thank Vadim Kaimanovich, Jean-François Quint
and Bertrand Deroin for enlightening discussions.

A spacial thanks to Wolfgang Woess for his continuous and kind support during
all my mathematical carrier.

1. G-harmonic functions and G-Poisson boundary

This section is a brief introduction to measurable Poisson boundary, following
Babillot [1] and Kaimanovich [13]

G-harmonic functions. Let G be locally compact second countable (thus metriz-
able and complete) group. Let G be the Borel σ-algebra of G and λ the right Haar
measure.

Let µ be a probability on G such that the closed semigroup generated by the
support of µ is the whole group G.
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We say that a function f ∈ L∞(G,λ) is µ-harmonic on (G,λ) (or G-harmonic)
if

f(g) =

∫
G

f(gγ)dµ(γ) for λ-almost all g ∈ G.

We denote by H∞λ (G) the subspace of G-harmonic functions in L∞(G,λ).
It can be shown, using left convolution by identity approximations of G, that any

f ∈ H∞λ (G) is λ-a.e. limit of harmonic functions that are left uniformly continuous
onG. In this sense, the space ofG-harmonic functions is determined by the behavior
of continuous ones. In particular, if all continuous harmonic functions are constant
then H∞λ (G) is trivial. We denote by H∞luc(Γ) the space of left uniformly continuous
G-harmonic functions.

Random walks and invariant map. Harmonic functions can be seen as asymp-
totic values of random walks in the following way. Let (Ω,P) = (G,µ)N be the
space of random steps and consider the right random walk

rn(ω) = ω1 · · ·ωn.

Let f be a bounded G-harmonic function. Notice that since the function f is de�ned
only λ-almost surely, the process f(grn(ω)) is well de�ned only for λ-almost all g.
For this reason the starting point g has to be chosen according to ρ, a probability law
on G with bounded density with respect to λ. Then the random process f(grn(ω))
is well de�ned on the space (G×Ω, ρ×P), and since f is harmonic, it is a bounded
martingale. Thus the limit

(2) lim
n→∞

f(grn(ω)) =: Zf (g, ω) exists ρ(dg)P(dω)-almost surely.

Let T be the shift on Ω; then is easily checked that

Zf (g, ω) = Zf (gω1, Tω) ρ(dg)P(dω)-almost surely

that is, Zf is a bounded measurable invariant map on G × Ω. In fact (2) de�nes
an isometry of H∞λ (G) onto the subspace of measurable invariant maps of L∞(G×
ω, ρ× P). The reverse map is given by

fZ(g) := E(Z(g, ω)) ρ(dg)-almost surely.

Poisson transform and G-Poisson boundary. Take a measurable space (X,X, ν)
endowed with a measurable G-action and a µ-stationary probability measure ν. The
Poisson transform

Pν : φ 7→ fφ(g) :=

∫
φ(g · x)dν(x)

maps any bounded function φ in L∞(X, ρ ∗ ν) to a µ-harmonic function fφ of
H∞λ (Γ).
Notice that the Poisson transform is not well de�ned as a map on L∞(X, ν). In
fact, since ν is not in general G-quasi invariant (i.e. g∗ν is not in general absolutely
continuous with respect to ν), two functions that coincide ν-a.s. can have di�erent
images.

If the Poisson transform is an isometry of L∞(X, ρ ∗ ν) onto H∞λ (G) then we
say that (X, ν) is the (G,µ)-Poisson boundary. It can be shown that the Poisson
boundary is unique as a G-measurable space and that (X, ρ∗ν) is a Lebesgue space
(cf. [1] propositions 2.26 and 2.28).
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If X is the G-Poisson boundary then there exists a measurable boundary map
bnd : Ω → X such that for every harmonic function f ∈ H∞λ (G) there exists
φf ∈ L∞(X, ρ ∗ ν) with

φf (g · bnd(ω)) = lim
n→∞

f(grn(ω)) ρ(dg)P(dω)− a.s..

(cf. [1] proposition 2.26. See also the proof of Lemma 2 ).Thus

f(g) =

∫
φf (g · x)dν(x) ρ(dg)− a.s. and

Zf (g, ω) = φf (g · bnd(ω)) ρ(dg)P(dω)− a.s..

The µ-invariant measure ν onX is then the image of P under bnd. The boundary
map is G-equivariant in the sense that bnd(ω) = ω1 · bnd(Tω).

Countable group Γ. Suppose now that the group G = Γ is countable. The Haar
measure λ is then the counting measure and one can choose ρ with non-zero mass
in all elements g ∈ Γ. This means that all the equalities above hold for all g ∈ Γ.

In this particular case (and under the hypothesis that the support of µ generates
Γ as a semigroup) the stationary measure ν on X is Γ-quasi invariant and Pν is
well de�ned on L∞(X, ν) itself.

The fact that µ is absolutely continuous with respect to λΓ is also fundamental
for the study of Poisson boundary based on entropy [5, 15]. This complete theory
has permitted to determine a geometric model of the Poisson boundary for large
classes of countable groups.

Countable subgroup Γ of a continuous G. In this note we are interested in the
case when the measure µ is supported on a countable subgroup Γ of a continuous
group G and in particular when Γ is dense in G. Then a continuous harmonic
function f on G is uniquely determined by the values f(γ) for γ ∈ Γ. Thus f can
also be seen as a Γ-harmonic function. In other words, the restriction to Γ is an
isometric embedding of H∞luc(G) into H∞λ (Γ). In particular if (X, ν) is the Γ-Poisson
boundary then there exists φ in L∞(X, ν) such that

f(γ) =

∫
X

φ(γ · x) ∀γ ∈ Γ.

However, in general there is no such integral representation for f(g) when g is not
in Γ, since X is not a priori a G-space.

In conclusion the Γ-Poisson boundary contains in principle all the information
about the G-Poisson boundary. But in order to extract this information one needs
to answer two related questions:

• Determine the G-action on (an extension of) X adapted to the action of G
on H∞λ (G)

• Determine which are the functions in L∞(X, ν) whose Poisson transform
can be extended to G.

Examples: Linear groups with rational coe�cients. We are in particular
interested in the case where the Γ-Poisson boundary is known, but G-harmonic
functions are not completely understood. Here some examples.
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A�ne groups. The real a�ne group Aff(R) is the group of real maps (b, a) : x 7→
ax+ b with a ∈ R∗+ and b ∈ R, that is the group of matrices

Aff(R) =

{[
a b
0 1

]
|a ∈ R∗+, b ∈ R

}
= Ro R∗+.

Harmonic functions on Aff(R) have been widely studied and some results are
known also without continuity assumptions on the measure µ. In particular, under
the log-moment assumptions :

E(| log a|) <∞ and E(log+ b) <∞,

it is known that:

• If E(log a) = 0 the Aff(R)-Poisson Boundary is trivial ([18], see also [1,
sect.4.5])

• If E(log a) < 0 the Aff(R)-Poisson Boundary is R with the µ-invariant mea-
sure ν given by the law of

(3) Z∞ =

∞∑
n=1

a1 · · · an−1bn

where (bn, an) are i.i.d. with law µ ([17], see also [1, thm 5.7]).

If E(log a) > 0 and the measure is spread-out then the Aff(R)-Poisson Boundary is
trivial. But it is still not known on what happens if E(log a) > 0 and the measure
µ is supported on a countable subgroup Γ.

On the other hand, using entropic criteria, the Γ-Poisson boundaries are well
understood. If Γ = Aff(Q), the group of a�ne maps with rational coe�cients, and
under suitable moment conditions, the Aff(Q)-Poisson boundary is given by the
product of the p-adic �elds Qp where the sum (3) converges a.s., that is∏

p:E(log |a|p)<0

Qp,

where we use the convention that Q∞ = R (see [3]).
This property was �rst proved by V.Kaimanovich [13] in the case of the Baumslag-

Solitar group

BS(1, p) =

〈[
p±1 ±1
0 1

]〉
=

{[
pm qpn

0 1

]
|m,n et q ∈ Z

}
= Z(

1

p
) o Z.

for some prime p. In this particular case the BS(1, p)-Poisson boundary is R if
E(log a) = −E(log |a|p) < 0 and Qp if E(log |a|p) = −E(log a) < 0.

It is then natural to ask which harmonic functions can be extended to (continu-
ous) harmonic functions of the closure of BS(1, p) in Aff(R), that is to

Aff(p,R) =

{[
pm b
0 1

]
|m ∈ Z, b ∈ R

}
= Ro Z.

It turns out that, even if the BS(1, p)-Poisson boundary is Qp, the real Poisson
boundary is not trivial. In Corollary 3 we will construct the Aff(p,R)-Poisson
boundary as a p-solenoid.

The unpublished manuscript [16] of J.-F. Quint presents a similar example of dy-
namical system acting in non contacting way on the torus and constructs harmonic
functions on the unstable variety.
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As we will see in Corollary 2 this kind of construction is possible since the action
of BS(1, p) on Aff(p,R) × Qp has a discrete orbit. It is still not clear to me what
happens when the action of Γ on the product of G and the Γ-Poisson boundary is
dense.

Question. For instance, let Aff(1/2, 1/3) be the countable subgroup generated by
the a�nities〈[

3±1 ±1
0 1

]
,

[
2±1 ±1
0 1

]〉
=

{[
2m23m3 q2n23n3

0 1

]
|mi, ni et q ∈ Z

}
.

Suppose E(log |a|∞) > 0, thus the Γ-Poisson boundary is equal to Q2, Q3 or Q2×Q3

(according to the sign of E(log |a|2) and E(log |a|3) ) and has no real component.
Is then the Aff(R)-Poisson boundary trivial?

Semi-simple groups. Similar questions arise for semi-simple groups. Take, for in-
stance, a measure µ supported on SL2(Q). Then the SL2(Q)-boundary is the
product of the Qp-projective lines for all primes p such that the support of µ is not
contained in a compact subgroup of SL2(Qp) (see [4]). In particular for

Γ = SL2(Z(1/2)) =

{[
a b
c d

]
|ad− cd = 1, a, b, c et d ∈ Z/2m for some m ∈ Z

}
the Γ-Poisson boundary is P1(R)×P1(Q2). It is natural to expect that the SL2(R)-
Poisson boundary should be P1(R), however I am not aware of any proof of this
fact. See also [1] section 1.7.4, for a similar example.

2. From Γ-boundaries to G-boundaries

Construction of a G-action on a Γ-space. Let (X,X, ν) be a Γ-measurable
Lebesgue space equipped with a measure ν that is Γ-quasi invariant. Suppose that
Γ is contained in a locally compact group G. We want to construct a sort of minimal
class of functions on X, on which G acts in such a way that the restriction to Γ of
this action coincides with the Γ-action.

Consider the product space (G × X,G × X, ρ × ν) and de�ne the Γ-action on
G×X

(4) γ ? (g, x) := (gγ−1, γ · x).

Let I be the σ-algebra of (Γ, ?)-invariant functions of G×X that is the class of
the functions φ such that ρ(dg)× ν(dx)-almost surely

(5) φ(g, x) = φ(gγ−1, γx) ∀γ ∈ Γ.

The σ-algebra I is complete because ρ × ν is (Γ, ?)-quasi invariant and Γ is
countable. Rokhlin's correspondence associates with the σ-algebra I a partition of
G×X, such that the functions in I are constant on the elements of the partition.
Since ρ is in the class of the Haar measure, we can choose the partition η to be
G-equivariant, for the G-action on G × X given by left multiplication on the G
component. In fact we have the following

Lemma 1. 1. There exists a countable family {φn}n∈N of bounded functions
dense in L1(G ×X, I, ρ × ν) such that for any x ∈ X the function φn(·, x)
is continuous on G and such that (5) hold for all (g, x) ∈ G×X.
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2. Let η be the partition de�ned by the equivalence relation

(6) (g1, x1) ∼ (g2, x2)⇔ φn(γg1, x1) = φn(γg2, x2) ∀n ∈ N and γ ∈ Γ.

Then η is a measurable partition (i.e. countably generated) and the associ-
ated complete σ-algebra coincides with I. In particular, for all φ ∈ I there

exists φ̃ de�ned on X̃ = G×X/η such that φ = φ̃ ◦ η ρ× ν-a.s.
3. If G acts on G×X by the left multiplication on the G component, then such

a partition is G-equivariant, i.e.

g0 · η(g, x) = η(g0g, x) ∀g0, g ∈ G and x ∈ X

Proof. 1. Since (G × X, I, ρ × ν) is a Lebesgue space , there exists a countable
family {ϕi} of bounded functions dense in the L1-norm. Set ϕi(g, x) ≡ 0 on the
set of the (g, x) on which (5) does not hold, in order to obtain a family of functions
?-invariant everywhere.

Take an approximation of the identity on G, i.e. a sequence of non-negative
continuous functions αn whose supports shrink to the identity e and such that
‖αn‖λ1 = 1. Let

ϕni (g, x) =

∫
G

αn(h)ϕi(hg, x)dλ(h)

It easy checked that the ϕni are still ?-invariant. By classical results, for any x ∈ X,
the functions ϕni (·, x) are continuous and converge to ϕi(·, x) in L1(G, ρ) when n
goes to ∞. Then

lim
n→∞

‖ϕni − ϕi‖
ρ×ν
1 = lim

n→∞

∫
X

‖ϕni (·, x)− ϕi(·, x)‖ρ1 dν(x)

=

∫
X

lim
n→∞

‖ϕni (·, x)− ϕi(·, x)‖ρ1 dν(x) = 0

since ‖ϕni (·, x)− ϕi(·, x)‖ρ1 is bounded by 2‖ϕi‖ρ×ν∞ .
Thus {ϕni }i,n is a countable family of G-continuous functions dense in L1(G ×
X, I, ρ× ν).

2. Let {Ii} be a countable family of intervals of R that separates the points
and let

B(n, i) := φ−1
n (Ii) ⊆ G×X.

Then the partition η de�ned in (6) is generated by {γB(n, i)|γ ∈ Γ, n, i ∈ N}; in
fact

η(x, g) =
⋂

(g,x)∈γB(n,i)

γB(n, i)
⋂

(g,x) 6∈γB(n,i)

γB(n, i)c.

Since by step 1 the complete σ-algebra generated by the sets B(n, i) is I, by Rohlin's
correspondence, we can conclude that any function of I is almost surely constant
on the elements of the partition.

3. Finally to proveG-equivariance of η, we need to verify that for every g0, g ∈ G
and x ∈ X, we have that (g′, x′) ∈ η(g, x) i.e.

φn(γg′, x′) = φn(γg, x) ∀n ∈ N and γ ∈ Γ

if and only if g0 · (g′, x′) = (g0g
′, x′) ∈ η(g0g, x), i.e.

φn(γ0g0g
′, x′) = φn(γg0g, x) ∀n ∈ N and γ0 ∈ Γ.

This follows from the fact that the functions φn are G-continuous and that Γ is
dense in G, letting γ → γ0g0 (resp. γ0 → γg−1

0 ).
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�

If η is de�ned as in (6), let

X̃ = G×X/η

be the space of the η components. The projection η : G×X → X̃ de�nes a natural

σ-algebra on X̃

Ĩ =
{
A ⊂ G×X|η−1(A) ∈ G× X

}
.

By the previous lemma the completion of η−1(Ĩ) is I.

We have just proved that X̃ has a natural structure of a G-space :

(7) g0 · η(g, x) = η(g0g, x)

Since the functions φn are ?-invariant everywhere, η allows to "transfer" the Γ-
action from G to X, in the sense that

η(gγ, x) = η(g, γ · x) ∀(g, x) ∈ G×X.

In particular, the action of Γ on X and on its projection on X̃ are related by

γ · η(e, x) = η(γ, x) = η(e, γ · x).

Let ν̃ = η∗(δe × ν) be the image on X̃ of the measure δe × ν by η , that is

(8) ν̃(φ̃) :=

∫
X

φ̃(η(e, x))dν(x).

By (7) we have then that the image by η of ρ× ν is ρ ∗ ν̃:

η∗(ρ× ν)(φ̃) =

∫
G×X

φ̃(η(g, x))dρ(g)dν(x) =

∫
G×X

φ̃(g · η(e, x))dρ(g)dν(x)

= ρ ∗ ν̃(φ̃)

In conclusion

Corollary 1. The projection η induces an isometry between L∞(G ×X, I, ρ × ν)

and L∞(X̃, Ĩ, ρ ∗ ν̃).

In the next section, using this measure theoretical construction, we will build the
G-boundary on the Γ-boundary and prove that, if the ?-action has a fundamental
domain, this fundamental domain is the G-boundary. However, it is not clear to
me how to construct a geometric model of this measure space when the Γ-action is
"dense".

An interesting case is, for instance, when G acts on X and this action coincides
with the Γ-action. Then L∞(X, ρ ∗ ν) embeds isometrically in L∞(G×X, I, ρ× ν).
In fact if ψ ∈ L∞(X, ρ ∗ ν) then

φψ(g, x) := ψ(g · x)

is clearly ?-invariant and this embedding is an isometry since

‖φψ‖∞ = lim
p→∞

( ∫
φψ(g, x)pρ(dg)ν(dx)

)1/p
= lim
p→∞

( ∫
ψ(y)pρ∗ν(dy)

)1/p
= ‖ψ‖∞.
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Question. However it is not clear under which conditions this map is surjective,

that is when X̃ coincide with X.
For instance, as a toy model, take G = (R,+), X = R and Γ = Q. For which

measure ν does X̃ = R? This is true by if ν is a.c. with respect to the Lebesgue
measure, but what happen for other measures?

What happen ifG = SL2(R)X = P1(R) and Γ = SL2(Z(1/2)) (or Γ = SL2(Q))?

From Γ-boundaries to G-boundaries. Suppose that the measure ν on X is µ-
stationary. For every bounded function φ in L∞(G ×X, ρ × ν) de�ne the Poisson
transform:

Pν : φ 7→ fφ(g) =

∫
φ(g, x)dν(x)for λ(dg)-almost all g.

If φ ∈ I then fφ is a bounded µ-harmonic function on L∞(G,λ), as required.
Indeed

fφ(g) =

∫
φ(g, x)ν(dx) =

∫
φ(g, γ · x)ν(dx)µ(dγ) =

=

∫
φ(gγ, x)ν(dx)µ(dγ) =

∫
fφ(gγ)µ(dγ).

The following proposition shows that all G-harmonic functions can be written
in such a way

Proposition 1. If (X, ν) is the Poisson boundary of (Γ, µ) then for every µ-
harmonic function f in G, there exists a bounded function φ ∈ I such that f = fφ
in L∞(G,λ).
In this case Pν is an isometry from L∞(G × X, I, ρ × ν) onto H∞λ (G). In other

word (X̃, ν̃) is the G-Poisson boundary.

Proof. Let ω ∈ (Ω,P) = (ΓN, µ⊗N) and rk = rk(ω) = ω1 · · ·ωk be the right random
walk on Γ of law µ. The process f(grk(ω)) is a bounded martingale on the space
(G × Ω, ρ × P) thus it converges almost surely. If bnd : Ω → X is the boundary
map

(9) lim
n→∞

f(grk(ω)) = φ(g,bnd(ω))

ρ×P-almost surely. Thus φ(g,bnd(ω)) is G×Ω measurable and, since ν = bnd−1P,
the function φ(g, x) is G × X-measurable. Furthermore since Γ is countable, for
ρ× P-almost all (g, ω)

lim
n→∞

f(gγrk(ω)) = φ(gγ,bnd(ω)) for all γ ∈ Γ.

Since X is a µ-boundary, notice that

ω1bnd(Tω) = bnd(ω)

where T is the shift on Ω. Take γ1 in the support of µ then the event γ1 = ω1 has
positive measure and conditioned to this event

φ(gγ−1
1 , γ1bnd(Tω)) = φ(gγ−1

1 ,bnd(ω)) = lim
n→∞

f(gγ−1
1 γ1rn(Tω)) = φ(g,bnd(Tω))

Since Tω is independent of ω1 and of same law as ω and that the support of µ
generates Γ, we can conclude that φ ∈ I.
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Lastly, lets us check that the Poisson transform is an isometry. In fact

‖fφ‖ρ∞ = lim
p→∞

(∫
|fφ(g)|pdρ(g)

)1/p

≤ lim
p→∞

(∫ ∫
|φ(g, x)|pdν(x)dρ(g)

)1/p

= ‖φ‖ρ×ν∞

On the other hand by the bounded convergence theorem

‖φ‖ρ×νp =

(∫ ∫
|φ(g, x)|pdν(x)dρ(g)

)1/p

=

=

(∫ ∫
| lim
n→∞

f(grn(ω))|pdP(ω)dρ(g)

)1/p

=

= lim
n→∞

(∫ ∫
|f(grn(ω))|pdρ(g)dP(ω)

)1/p

≤
(∫

(‖f‖ρ∞)pdP(ω)

)1/p

= ‖f‖ρ∞

since ρ is G-quasi invariant. �

G-Poisson boundary as Γ-ergodic diagonal components. Another way to
express the result of Proposition 1 is to say that the G-Poisson boundary coincides
with the space of ergodic components of Γ on (G ×X) with respect to the action
? de�ned in (4).

Observe that the action ? is, in reality, the standard left diagonal action of Γ on
G×X:

γ
d· (g, x) = (γg, γ · x).

In fact the two actions are conjugated by the map π : (g, x) 7→ (g−1, x), that is
an isomorphism of the measure space of (G×X, ρ× ν) that preserves the class of
measure. Thus the space L∞(G ×X, I, ρ × ν) coincides (via π) with the space of
bounded functions of (G×X, ρ×ν) that project on Γ\(G×X). In particular the G-
Poisson boundary is trivial if and only if the (diagonal) action of Γ on (G×X, ρ×ν)
is ergodic.

Conversely if the action of Γ on G × X is "measurably discrete", that is there
exists a fundamental domain ∆, then is possible to identify the G-Poisson boundary
with this geometric model:

Corollary 2. Suppose there exists a measurable fundamental domain ∆ ∈ G × X
for the action ? of Γ on G×X (or equivalently for the diagonal action) that is

• ρ× ν(Γ ?∆) = 1
• ρ× ν(∆ ∩

⋃
γ∈Γ−{e} γ ?∆) = 0

Let D be the restriction of the σ-algebra G × X to ∆. Then L∞(∆,D, ρ × ν) is
isometric to L∞(G ×X, I, ρ × ν) . The measurable space (∆,D) with the induced
G-action

g0 ∗ φ(g, x) :=
∑
γ∈Γ

φ(g0gγ
−1, γ · x)1∆(g0gγ

−1, γ · x) for all φ ∈ L∞(∆,D, ρ× ν)

and the µ-invariant measure de�ned by

ν̃(φ) :=
∑
γ∈Γ

∫
φ(γ−1, γ · x)1∆(γ−1, γ · x)ν(dx)

is the G-Poisson boundary.
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Proof. The map

A 7→ Γ ? A

induces an isometry of L∞(∆,D, ρ× ν) onto L∞(G×X, I, ρ× ν).
In fact if A is a non trivial set of ∆ then Γ ? A is a non trivial set of I. Clearly
Γ ? A ∈ I and it has non-zero measure. Let B ⊂ ∆ be a non-trivial set such that
ρ× ν(A∩B) = 0. We claim that ρ× ν(Γ ?A∩Γ ?B) = 0; in fact the measure ρ× ν
being quasi-invariant of ρ× ν(γ ? A ∩ γ ? B) = 0 and if γ1 6= γ2

ρ× ν(γ1 ? A ∩ γ2 ? B) ≤ ρ× ν(∆ ∩
⋃

γ∈Γ−{e}

γ ?∆) = 0

The isometry is surjective. Let I ∈ I, we claim that I = Γ ? (I ∩∆). Indeed

Γ ? (I ∩∆) =
⋃
γ

γ ? I ∩ γ ?∆ =
⋃
γ

(I ∩ γ ?∆) = I ∩ Γ ?∆

Observe that if A ⊆ ∆ then

1Γ?A(g, x) =
∑
γ∈Γ

1A(gγ−1, γ · x)

and the sum has only one term for ρ× ν-almost all (g, x) . It easily seen that the
projection of ν on D is

ν̃(A) =
∑
γ∈Γ

∫
1A(γ−1, γ · x)ν(dx) = ν(Γ ? A).

�

3. G-Poisson boundary of Baumslag-Solitar group

Corollary 3. Let p be a prime number and consider the Baumslag-Solitar group

BS(1, p) =

〈[
p±1 ±1
0 1

]〉
.

Let µ be a irreducible measure on BS(1, p) with �rst logarithmic moment on R and
Qp. Suppose that

φp =

∫
Γ

log |a(γ)|pdµ(γ) < 0

where γ =

[
a(γ) b(γ)

0 1

]
that is the BS(1, p)-Poisson boundary is X = Qp. Let

Aff(p,R) =

{[
pm b
0 1

]
|m ∈ Z, b ∈ R

}
= Ro Z

be the closure of BS(1, p) in Aff(R). Then the Aff(p,R)-Poisson boundary is the
p-solenoid :

∆ = {(g, x) ∈ Aff(R)×Qp|a(g) = 1; 0 ≤ b(g) < 1; |x|p ≤ 1} = [0, 1)× Zp,

equipped with the Aff(p,R)-action on φ ∈ L∞(∆, ρ× ν):

(b, pm) · φ(x∞, xp) =
∑

β∈Z(1/p)

1∆ · φ(pmx∞ + b− β, pmxp + β),
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and the invariant measure

ν̃(φ) :=
∑

β∈Z(1/p)∩[0,1)

∫
φ(β, x− β)1Zp+β(x)ν(dx).

Proof. We just need to prove that ∆ is a fundamental domain. In fact for any
x ∈ Qp, let α(x) ∈ Z(1/p) such that |x− α(x)|p ≤ 1. The choice of α is unique up
to the sum with an integer. It easily checked that, for every (b, x) ∈ R × Qp, the
unique k ∈ Z(1/p) such |x + k|p ≤ 1 and b − k ∈ [0, 1) is k = [b + α(x)] − α(x).
Thus

γ ? ((b, pm), x) ∈ ∆⇔ γ = ([b+ α(pmx)]− α(pmx), pm)

�

To illustrate how the previous corollary can be used to study the behaviour of
harmonic functions on BS(1, p), consider for example

φ(g, x) = 1[0,1)×{1}(g)1pZp
(x)

and the associated harmonic function:

f(b, pm) =

∫ ∑
β∈Z(1/p)

1[0,1)(b− β)1pZp(pmx+ β)ν(dx).

Then we have

• f is periodic of period p on the b coordinate

f(pk + b, pm) =

∫ ∑
β∈Z(1/p)

1[0,1)(b− β)1pZp(pmx+ β + pk)ν(dx) = f(b, pm)

• limm→+∞ f(b, pm) = 1 if b ∈ [0, 1) + pZ. In fact ‖f‖∞ = 1 and b ∈ [0, 1)

f(b, pm) ≥
∫

1[0,1)(b)1pZp
(pmx)ν(dx) = ν(p1−mZp)→ 1

when m→ +∞
• limm→+∞ f(b, pm) = 0 if b 6∈ [0, 1) + pZ in fact

f(b, pm) ≤
∫ ∑

β∈Z(1/p)

1[0,1)(b− β)1pZp
(pmx+ β)1p1−mZp

(x)ν(dx) +

+(1− ν(p1−mZp))

≤
∑

β∈Z(1/p)

1[0,1)(b− β)1pZp
(β) + (1− ν(p1−mZp))

=
∑
k∈Z

1[0,1)(b− pk) + (1− ν(p1−mZp))

= 1[0,1)+pZ(b) + (1− ν(p1−mZp)).
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