
POISSON BOUNDARY OF GLd(Q)SARA BROFFERIO AND BRUNO SCHAPIRAAbstrat. We onstrut the Poisson boundary for a random walk supportedby the general linear group on the rational numbers as the produt of �ag man-ifolds over the p-adi �elds. To this purpose, we prove a law of large numbersusing the Oseledets' multipliative ergodi theorem. The only assumption weneed is some moment ondition on the measure governing the jumps of therandom walk, but no irreduibility hypothesis is made.1. IntrodutionThe Poisson boundary of a group endowed with some measure µ, desribes theasymptoti behavior of the random walk with step law µ. In the same time it givesa representation of bounded harmoni funtions (see for instane [7℄ for a survey onthis topi). There are now many results on Poisson boundary of groups of matries(see for instane [1, 8, 10, 15, 16, 20, 23℄ for some of the main results in this �eld,and [3, 9℄ for some surveys).Here we onsider more spei�ally groups of matries with rational oe�ients,whih were already onsidered in our previous works [4, 24℄ for subgroups of tri-angular matries. The novelty in the rational ase, in omparison with standardresults on real matries, is that to desribe the Poisson boundary, one has now toonsider all possible embeddings of the rational �eld in the p-adi �elds, and thePoisson boundary is then a produt of "loal parts", one for eah prime number p(see Theorem 1.1 below for a preise statement of our result). This phenomenonwas already observed in [14℄ for the group of a�ne transformations with dyadioe�ients, and is very similar to some result proved in [2℄ in an adeli setting. Itshould be notied also that we do not need any hypothesis on the support of themeasure µ.Denote by P∗ the set of prime numbers and let P = P∗ ∪ {∞}. For p ∈ P∗,denote by Qp the �eld of p-adi numbers, and set by onvention Q∞ = R.If µ is a probability measure on GLd(Qp) with �nite logarithmi moment, i.e.
∫ (

ln+ ||g||p + ln+ ||g−1||p
)

dµ(g) < +∞,the assoiated Lyapunov exponents are the real numbers λ1(p) ≥ · · · ≥ λd(p) suhthat
k∑

i=1

λi(p) = lim
n→+∞

1

n

∫
ln ||

k∧
g||p dµ∗n(g),2000 Mathematis Subjet Classi�ation. 22D40; 28D05; 28D20; 43A05; 60B15; 60J50.Key words and phrases. Random walk on groups, Poisson boundary, linear group over number�elds, Oseledets' multipliative ergodi theorem, law of large numbers.1



POISSON BOUNDARY OF GLd(Q) 2where µ∗n denotes the n-fold onvolution of µ and ∧ the exterior produt. Denoteby Pp the paraboli subgroup of GLd(Qp) onsisting of matries (pi,j) with pi,j = 0,when λi(p) < λj(p), and let Bp := GLd(Qp)/Pp be the assoiated �ag manifold.The main result of this paper is the following:Theorem 1.1. Let µ be a probability measure on GLd(Q) suh that
∑

p∈P

∫ (
ln+ ||g||p + ln+ ||g−1||p

)
dµ(g) < +∞.Then there exists a unique probability measure ν on the spae

B :=
∏

p∈P

Bp,suh that (B, ν) is the Poisson boundary of (GLd(Q), µ).This theorem uni�es and generalizes several results on Poisson boundary of ratio-nal matries groups, known up to now. In partiular, it has been proved separatelyby F. Ledrappier [20℄ and V. Kaimanovih [12℄ that the Poisson boundary of a ran-dom walk supported by SLd(Z) is the real �ag manifold B∞. This results is on-tained in Theorem 1.1 beause, in this ase, for all p 6= ∞, the assoiated Lyapunovexponents are all equal to zero, thus Bp is trivial. Furthermore sine Theorem 1.1does not require any irreduibility ondition, it also applies to the ase of rationala�ne group and to rational triangular matries previously threaded by the authors[4, 24℄.We would like to remark that for general number �elds (i.e. �nite extensionsof Q) a similar result an be proved by adapting our methods (see in [24℄ hints topossible generalization).Due to its generality, our result does not say muh about ν and its support. Inpartiular it is not true that the restrition of ν to eah Bp has always full support.For instane if µ is supported on the subgroup of upper triangular matries, weknow [4, 24℄ that ν harges only one Bruhat ell of eah Bp. But even this is notoptimal sine µ ould be supported on diagonal matries and with all Lyapunovexponents distint, but in this ase the Poisson boundary would be trivial (onepoint). However irreduibility hypothesis an give information on the support of µ.We have for instane the following triviality riterion:Corollary 1.1. Let p ∈ P. If λ1(p) = λd(p), then the projetion of ν on Bp istrivial.Conversely, if the projetion of ν on Bp is trivial and no proper subspae of Qd
pis �xed by the support of µ, then λ1(p) = λd(p).There exists several results in the literature to deide whether the real Lyapunovexponents are all equal λ1(∞) = λd(∞). For instane, under irreduibility hypoth-esis this is equivalent to ask that the losed subgroup generated by µ in GLd(R) isamenable [11℄. For other referenes and results on produt of real random matries,see also [3℄. It seem very likely that similar results hold on p-adi setting.A di�erent question that is still open is to understand the behavior of the measure

ν on the produt of the p-�ag manifolds, and not only of its projetion on eah Bp.For instane: does ν harge the whole produt or is it supported by some "diagonal"sub-set? Is there some sort of orrelation among the di�erent p-adi omponents?



POISSON BOUNDARY OF GLd(Q) 3The main tool of the proof of Theorem 1.1 is to produe, using the multipliativeergodi theorem of Oseledets, a law of large numbers for random walks on GLd(Qp)(not neessarily with rational oe�ients, see Proposition 3.1). Notie that suhresult on GLd(R) or on the a�ne group over Qp was already known (see [13℄ and[5℄ respetively). The Lyapunov exponents give the speeds of onvergene and theboundary limit of the random walk on Bp the diretions. This is done in Setion3, where we also use this result to prove that Bp and B are µ-boundaries.In Setion 4, we use entropy riterion due to Kaimanovih to establish the max-imality of (B, ν) and prove the main theorem and its orollary.We notie that our strategy is very similar in spirit to that used by Karlsson andMargulis in [18℄ in a slightly di�erent setting. But here the proof is more diret,sine we an use Oseledets theorem, and we do not need to identify the Poissonboundary with the geometri boundary of some non-positively urved metri spae.The authors would like to thank Uri Bader for suggesting them the problem.They are also grateful to François Ledrappier and Anders Karlsson for useful adviesand referenes. 2. Preliminaries2.1. General linear group over Qp. If K is a �eld, we denote by GLd(K) thegroup of invertible matries of size d with oe�ients in K. We denote by e theidentity matrix.For p ∈ P and v = (v1, . . . , vd) ∈ Qd
p, we set

|v|p = max
i

|vi|p, if p 6= ∞ and |v|∞ =

√∑

i

|vi|2∞,and if g ∈ GLd(Qp) we set
||g||p = sup

|v|p=1

|gv|p.For any p ∈ P and g, h ∈ GLd(Qp) set
dp(g, h) = ln+ ||g−1h||p + ln+ ||h−1g||p,where ln+ denotes the positive part of the funtion ln. It is easily heked that dp issymmetri and satis�es the triangular inequality. It is not a distane sine the setof g ∈ GLd(Qp) suh that dp(e, g) = 0 is the ompat subgroup of linear isometriesof Qd

p. Furthermore dp is left-invariant:
dp(γg, γh) = dp(g, h),for all g, h, γ ∈ GLd(Qp).For all g, h ∈ GLd(Q), let
d(g, h) =

∑

p∈P

dp(g, h).This de�ne a left-invariant pseudometri on GLd(Q).



POISSON BOUNDARY OF GLd(Q) 42.2. The �ag manifold. For eah p ∈ P �x the sequene of Lyapunov exponents
λ1(p) ≥ · · · ≥ λd(p). The assoiated paraboli sub-group is

Pp = {(pi,j) ∈ GLd(Qp) | pi,j = 0 if λi(p) < λj(p)} .The �ag manifold Bp := GLd(Qp)/Pp is then a ompat separable GLd(Qp)-spae.We mention that there is a one to one map between Bp and the spae of �ags,viewed as the set of imbedded sequenes of sub-spaes of Qd
p of �xed dimensions.In fat

Bp =
{
(V1, . . . , Vr) | V1 ≤ · · · ≤ Vr = Qd

p, dim(Vi) = ji ∀i ≤ r
}

,where r is the number of distint values taken by λ1(p), . . . , λd(p), and j1, . . . , jrare de�ned indutively by jr = d and ji−1 = max{j < ji | λj(p) > λji
(p)}, for

2 ≤ i ≤ r. To see the orrespondene between Bp and this spae of �ags, observethat GLd(Qp) ats transitively on the �ags and that the paraboli subgroup Pp isthe stabilizer of the element (E1, . . . , Er), where for all i, Ei is the vetor spaegenerated by the �rst ji vetors of the anonial basis.Let
B :=

∏

p∈P

Bp,equipped with the produt topology. With the natural diagonal ation, B is aompat separable GLd(Q)-spae.2.3. Random walk and µ-boundaries. Let µ be a probability measure on aloally ompat separable group G. Let
(Ω, P) := (G, µ)⊗N,be the produt of N independent opies of (G, µ) (here N is the set of stritlypositive integers). If w = (wi, i ≥ 1) ∈ Ω, the random walk is the proess de�nedby

xn := w1 . . . wn ∀n ≥ 1 and x0 := e.Observe that under P, for any �xed n, the law of xn is µ∗n, the n-th onvolutionpower of µ.Assume that B is a ompat separable spae, endowed with a probability measure
ν and a ontinuous ation of G. We say that ν is µ-stationary (also known as µ-invariant or µ-harmoni), if

µ ∗ ν :=

∫

G

(gν) dµ(g) = ν,where for all g ∈ G, gν is de�ned by
gν(f) =

∫

B

f(gz) dν(z),for all ontinuous funtions f . In this ase, aording to Furstenberg [8, 9℄, we saythat (B, ν) is a µ-boundary if, P-almost surely xnν onverges weakly to a Dirameasure.A µ-boundary (B, ν) is naturally assoiated to a measurable funtion b = bB :
Ω → B de�ned by(1) lim

n→+∞
xnν = δb(w).Then ν is the image of P under b.



POISSON BOUNDARY OF GLd(Q) 5Denote by θ the shift transformation on Ω: if w = (wi, i ≥ 1) ∈ Ω, then
(θw)i = wi+1 i ≥ 1.The measure P is θ-invariant and it is easy to see that the funtion de�ned in (1)satis�es

w1b(θw) = b(w).This property haraterizes funtions that arise from µ-boundaries, as follows fromthis known result (see for instane [15, 20℄):Proposition 2.1. Let B be a ompat separable G-spae and let b : Ω → B be ameasurable map, suh that P-a.s. we have w1b(θw) = b(w). Let ν be the law of b.Then (B, ν) is a µ-boundary.Proof. We give here a proof for sake of ompleteness. By using the invariane of Pby θ and the hypothesis on the map b we get for every ontinuous funtions f on B

ν(f) =

∫

Ω

f(b(w)) dP(w)

=

∫

Ω

f(w1b(θw)) dP(w)

=

∫

G

(∫

Ω

f(w1b(w′)) dP(w′)

)
dµ(w1) = µ ∗ ν(f),proving that ν is µ-stationary. The hypothesis on b also shows that for any on-tinuous funtion f , the sequene

Mn(w) := xn · ν(f) n ≥ 1,is a bounded martingale. Thus this sequene onverges a.s and in L1 toward somelimit, say νw
∞(f). Sine B is separable, this de�nes atually a random measure νw

∞on B, whih is the weak limit of xn · ν, n ≥ 1. Observe now that for all k ≥ 1,
νw
∞ = xkνθkw

∞ P − a.s.Moreover E[νw
∞] = ν. Observe also that the Dira measure δb(w) has the sameproperties. As a onsequene for any k ≥ 1, any Borel subsets O1, . . . , Ok ⊂ G and

U ⊂ B,
Pνw

∞[O1 × · · · × Ok × U ] =

∫

Ω

νw
∞(U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w)

=

∫

Ω

w1 . . . wkνθkw
∞ (U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w)

=

∫

Ω

ν((w1 . . . wk)−1U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w).For the same reason
Pδb(w)[O1 × · · · × Ok × U ] =

∫

Ω

ν((w1 . . . wk)−1U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w).Thus the two measures Pνw
∞ and Pδb(w) de�ned on Ω × B oinide on Fk :=

σ(w1, . . . , wk) ∨ B, for all k ≥ 1, where B denotes the Borel sets of B. Sine the�ltration (Fk)k≥0 generates the σ-algebra of Ω × B on whih are de�ned thesemeasures, they are equal, proving that νw
∞ is well a Dira measure. This onludesthe proof of the proposition. �



POISSON BOUNDARY OF GLd(Q) 62.4. Poisson boundary and asymptoti entropy. The Poisson boundary (B, ν)is de�ned as the maximal µ-boundary, i.e. it is the µ-boundary suh that any other
µ-boundary is one of its measurable G-equinvariant quotients. A lassial problemis to deide weather a spae, that is known to be a µ-boundary, is in fat themaximal one.For ountable groups, there exists powerful tehniques based on the estimationof the entropy introdued by Kaimanovih and Vershik [16℄ and Derrieni [6℄ andfurther developed by Kaimanovih (see [15℄ for details). Suppose that the measure
µ has �nite entropy:

H(µ) := −
∑

g∈G

µ(g) lnµ(g) < ∞.If (B, ν) is a µ-boundary and z ∈ B, it is possible to de�ne the law Pz of w ∈ Ωonditioned by b(w) = z. Then for n ≥ 0, Pz
n denotes the law of xn under Pz, i.e.

Pz
n(g) = Pz(xn = g) = P(xn = g | b(w) = z).The onditional asymptoti entropy hz is de�ned by

hz := − lim
n→+∞

ln Pz
n(xn)

n
Pz − a.s.Then (B, ν) is the Poisson boundary if, and only if, hz is equal to zero for ν-almostevery z. 3. Law of large numbers and µ-boundaries for GLd(Qp)In this setion we an assume µ to be a probability measure on GLd(Qp), notneessarily supported on matries with rational oe�ients. We are going to showthat, under �rst moment hypothesis, the random walk on GLd(Qp) satis�es a stronglaw of large numbers, in whih the "speeds" of the drift are given by the Lyapunovexponents and the "diretions" are given by an element of the assoiated �ag man-ifold Bp. This approah was introdued by V. Kaimanovih in [13℄ for semisimpleLie groups, as a group-geometrial version of the lassial multipliative ergoditheorem of Oseledets (see also [18℄ and [17℄).Related to this result, we will see that Bp, endowed with the law of the "dire-tion", is a µ-boundary for the random walk.3.1. Oseledets' theorem and law of large numbers. If p = ∞, let Λn = Λn(∞)be the diagonal matrix of GLd(R) with oe�ients(2) (Λn)i,i := enλi(∞) ∀i ≤ d.If p ∈ P∗, let Λn = Λn(p) be the diagonal matrix with oe�ients(3) (Λn)i,i := p

−
h

nλi(p)

ln p

i

∀i ≤ d;where [·] is the integer part. In suh a way, Λn has rational entries whose p-normsare lose to the enλi(p)'s.Proposition 3.1. Assume that ∫
dp(e, g) dµ(g) < +∞. Then there exists a mea-surable map

b = bp : Ω → Bp,suh that P-almost surely b(w) is the unique element of Bp suh that(4) lim
n→+∞

1

n
dp (xn, bΛn) = 0,



POISSON BOUNDARY OF GLd(Q) 7for any b in the lass of b(w).To prove this proposition we use the following lemma that translates Oseledets'Theorem in our setting:Lemma 3.1. Assume that ∫
dp(e, g) dµ(g) < +∞. Then there exists a measurablemap

b = bp : Ω → Bp,suh that P-almost surely(5) lim
n→+∞

1

n
ln ||x−1

n bΛn||p = 0,for any b in the lass of b(w).Proof. Let us �rst reall the multipliative ergodi theorem, �rst proved by V.I.Oseledets [21℄ for real matries and generalized by M.S. Raghunathan [22℄ to ma-tries on loal �elds. It says that P-a.s. there exists a �ltration of subspaes of Qd
p,

{0} = V 0(w) ⊂ V 1(w) ⊂ · · · ⊂ V r(w) = Qd
p, suh that(i) The map w → V i(w) is measurable for all i ≤ r.(ii) For all 1 ≤ i ≤ r, we have v ∈ V i(w) \ V i−1(w) if, and only if,

lim
n→+∞

1

n
ln ||w−1

n . . . w−1
1 v||p = −λji

(p),where r and j1, . . . , jr are de�ned as in setion 2.2.Suppose that p 6= ∞ (the real ase is treated analogously). Denote by (e1, . . . , ed)the anonial basis of Qd
p. Consider a matrix b ∈ GLd(Qp) suh that for all i ≤ r,

b sends the family (e1, . . . , eji
) into a basis of V i(w). Then b = [v1| · · · |vd], wherefor all i ≤ r, (v1, . . . , vji

) is a basis of V i(w). Observe that
x−1

n bΛn =

[
x−1

n v1p
−

h

nλ1(p)
ln p

i

∣∣∣∣ · · ·

∣∣∣∣x
−1
n vdp

−
h

nλd(p)

ln p

i
]

.Then
max

k=1,...,d

(
p

h

nλk(p)

ln p

i

|x−1
n vk|p

)
≤

∥∥x−1
n bΛn

∥∥
p
≤ d max

k=1,...,d

(
p

h

nλk(p)

ln p

i

|x−1
n vk|p

)
.Then, sine w−1

n . . . w−1
1 = x−1

n , by (ii)
lim

n→+∞

1

n
ln ||x−1

n bΛn||p = 0.To onlude the proof, just observe that two matries b1 and b2 give two bases ofthe same �ltration {Vi(w)}i if, and only if, b−1
1 b2 is in the group Pp, thus suhmatrix b an be identi�ed with an element of Bp. �Proof of Proposition 3.1. Let x̃n = (wt

1)
−1 · · · (wt

n)−1 = (xt
n)−1 be the randomwalk of law µ̃, image of µ under the map g 7→ (gt)−1. Then the Lyapunov exponentsassoiated to µ̃ are

λ̃i = −λd−i.Let Λ̃n be the diagonal matrix onstruted with the exponents λ̃i as in (3). For
P-almost all w there exists a b̃ ∈ GLd(Qp) suh that:

lim
n→+∞

1

n
ln ||xt

nb̃Λ̃n||p = 0.



POISSON BOUNDARY OF GLd(Q) 8Consider the matrix s =




0 · · · 1... · · ·
...

1 · · · 0


 that transforms the basis (e1, . . . , ed) inthe basis (ed, . . . , e1). Then

||xt
nb̃Λ̃n||p = ||xt

nb̃ss−1Λ̃ns||p sine ‖s‖p = ‖s−1‖p = 1

= ||xt
nb̃sΛ−1

n ||p sine s−1Λ̃ns = Λ−1
n

= ||Λ−1
n (̃bs)txn||p sine ‖gt‖p = ‖g‖p.Set b = ((̃bs)t)−1, then

lim
n→+∞

1

n
ln ||Λ−1

n b
−1

xn||p = 0.We want to show now that if b is as in (5) then b and b are in the same lass in
Bp. To do this observe that(6) u ∈ Pp ⇐⇒ lim

n→+∞

1

n
ln ||Λ−1

n uΛn||p = 0 ⇐⇒ lim
n→+∞

1

n
ln ||Λ−1

n uΛn||p ≤ 0.This an be proved by diret alulations using the fat that maxi,j |gi,j|p ≤ ||g||p ≤
d2 maxi,j |gi,j |p for all p ∈ P .Then sine

ln ‖Λ−1
n b

−1
bΛn‖p = ln ‖Λ−1

n b
−1

xnx−1
n bΛn‖p ≤ ln ‖Λ−1

n b
−1

xn‖p + ln ‖x−1
n bΛn‖p,it follows immediately that b

−1
b ∈ Pp.On the other hand

||Λ−1
n b

−1
xn||p||Λ

−1
n uΛn||

−1
p ≤ ||Λ−1

n u−1b
−1

xn||p ≤ ||Λ−1
n u−1Λn||p||Λ

−1
n b

−1
xn||p.Then for every b1 = bu with u in the group Pp,

lim
n→+∞

1

n
ln ||Λ−1

n b−1
1 xn||p = 0.Thus for all b ∈ b(w),

lim
n→+∞

1

n
dp (xn, bΛn) = lim

n→+∞

1

n
(ln+ ‖x−1

n bΛn‖p + ln+ ||Λ−1
n b−1xn||p) = 0.It just remains to see that the lass b(w) is the unique suh that (4) holds. Butif b1 and b2 are two matries suh that (4) holds, then

0 = lim
n→+∞

1

n
dp (b1Λn, b2Λn) = lim

n→+∞

1

n
dp

(
e, Λ−1

n b−1
1 b2Λn

)
,and using one more (6) we onlude. �3.2. The spaes Bp and B are µ-boundaries. It is easily heked, using left-invariane of dp, that the funtion bp de�ned in Proposition 3.1 satis�es the hy-pothesis of Proposition 2.1. Then we immediately getCorollary 3.1. Let µ be a probability measure on GLd(Qp). Assume that ∫

dp(e, g) dµ(g) <
+∞, and let νp be the law of bp. Then (Bp, νp) is a µ-boundary.Let µ be a probability measure on GLd(Q). Assume that ∫

d(e, g) dµ(g) < +∞.Let b be the map from Ω to B =
∏

p∈P Bp de�ned by:
b : w 7→ b(w) = (bp(w))p∈P .



POISSON BOUNDARY OF GLd(Q) 9Let ν be the law of b. Then (B, ν) is a µ-boundary.4. Poisson boundary of GLd(Q)To prove that B is the maximal µ-boundary, we use the following lemma, whihis a generalization of the ray riterion of V. Kaimanovih [15℄, already impliitlyused in our previous works [4, 24℄.Lemma 4.1. Let µ be a probability measure on a ountable group G with �niteentropy. Let (B, ν) be a µ-boundary and b the assoiated boundary map. Supposethat for eah n there exits a measurable map Cn from B to subsets of G suh that:
lim

n→+∞
P(xn ∈ Cn(b(w))) = 1 and lim

n→+∞

1

n
ln |Cn(z)| ≤ δ ν(dz)-almost surely.Then hz ≤ δ for ν-almost all z.Proof. Observe that

P (xn ∈ Cn(b(w))) =

∫

B

Pz
n [Cn(z)] ν(dz) → 1.Thus, along a sub-sequene, Pz

n [Cn(z)] onverges to 1 for ν-almost all z.Reall that hz is the Pz-almost sure limit of − ln Pz
n(xn)/n. Now for any ε > 0onsider the set

An(z) = {g ∈ G | −hz − ε < ln Pz
n(g)/n < −hz + ε} .Then Pz

n(An(z) ∩ Cn(z)) onverges to 1 on a sub-sequene, while, for large n

Pz
n(An(z) ∩ Cn(z)) ≤ en(ε−hz)|Cn(z)| ≤ en(ε−hz)en(δ+ε).Thus δ − hz + 2ε ≥ 0. Sine ε was arbitrarily hosen, we get hz ≤ δ. �In order to apply this lemma in our setting we need to show that the gauge on

GLd(Q) assoiated to the distane d grows at most exponentially:Lemma 4.2. For g ∈ GLd(Q) and R ≥ 0, let
B(g, R) = {h ∈ GLd(Q) | d(g, h) ≤ R}.Then there exits a onstant C > 0 suh that for all g and R

|B(g, R)| ≤ CeCR.Proof. First observe that sine d(e, g−1h) = d(g, h), we have g−1B(g, R) = B(e, R).Thus two balls with the same radius have the same ardinality, and we an restritus without loss of generality to the ase g = e.Observe now that if h = (hi,j) ∈ B(e, R) then for all ouples of indies (i, j)
∑

p∈P

ln+ |hi,j |p ≤
∑

p∈P

max
i,j

ln+ |hi,j |p ≤ d(e, h) ≤ R.It an be shown (see for instane [4℄) that there exists C′ suh that for all R
∣∣∣∣∣∣



q ∈ Q |

∑

p∈P

ln+ |q|p < R





∣∣∣∣∣∣
≤ C′eC′R.The desired result follows. �



POISSON BOUNDARY OF GLd(Q) 10Proof of Theorem 1.1. First observe that, sine µ has �nite �rst moment with re-spet of to an exponentially growing gauge, it has �nite entropy.For any p, onsider the moment of the random walk with respet to dp:
mp =

∫
dp(e, g) dµ(g).Observe that ∑

p∈P mp = E(d(e, w1)) < +∞. Fix F a �nite subset of P and set
mF c =

∑
p∈F c mp. By the law of large numbers, P-almost surely

∑
p∈F c dp(xn, e)

n
≤

∑n

k=1

∑
p∈F c dp(xk, xk−1)

n
=

∑n

k=1

∑
p∈F c dp(wk, e)

n
→ mF c .Fix ε > 0 and b = (bp)p∈P ∈ B, and set

CF,ε
n (b) =



g ∈ GLd(Q) | dp(g, bpΛn(p)) ≤ n ε ∀p ∈ F,

∑

p∈F c

dp(g, e) ≤ n (mF c + ε)



 .Then by Proposition 3.1

P
[
xn ∈ CF,ε

n (b(w))
]
→ 1.To apply Lemma 4.1, we need to ontrol the ardinality of CF,ε

n . Suppose that
CF,ε

n (b) is nonempty and let g0 ∈ CF,ε
n (b). Then for all g ∈ CF,ε

n (b),
d(g0, g) =

∑

p∈P

dp(g0, g)

≤
∑

p∈F

(dp(g0, bpΛn) + dp(bpΛn, g)) +
∑

p∈P−F

(dp(g0, e) + dp(e, g))

≤ 2n (|F |ε + mF c + ε)Thus
1

n
ln |CF,ε

n (b)| ≤
1

n
ln |B(g0, 2n (|F |ε + mF c + ε))| ≤ 2nC (|F |ε + mF c + ε) +

lnC

n
.Thus for all �nite F and all ε > 0,

hz ≤ 2C(|F |ε + mF c + ε).Letting ε go to zero and F grow to P (in suh a way mF c goes to zero), it followsthat hz = 0 and thus that (B, ν) is the Poisson boundary. �To onlude we prove our triviality riterion:Proof of Corollary 1.1. It is immediate that if λ1(p) = λd(p) then Pp = GLd(Qp),thus Bp is trivial.Suppose now that the projetion of ν on Bp is trivial , but that λ1(p) > λd(p).In this ase Bp is nontrivial and the projetion of ν on Bp is a dira measure whosemass is onentrated in a point b ∈ Bp that is �xed by the support of µ. Then thesupport of µ �xes all sub-spaes that ompose the nontrivial �ag assoiated to b.This ontradits the fat that no proper subspae of Qd
p is �xed by the support of

µ. �
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